
Revista de Sistemas de Informação da FSMA
n. 30 (2022) pp. 28-37 http://www.fsma.edu.br/si/sistemas.html

Annotation Visualizer Plugin: An IDE-Integrated
Tool for Code Annotations Visualization

Sergio Abilio, Federal University of ABC, São Paulo, Brazil
Phyllipe Lima, Federal University of Itajubá, Brazil

Everaldo Gomes, Federal University of ABC, São Paulo, Brazil
Eduardo Guerra, Free University of Bolzano, Italy

Paulo Meirelles, Federal University of ABC, São Paulo, Brazil

Abstract—Code annotations are used mainly in modern Java
software, and their primary purpose is to configure metadata
into programmable elements such as methods and classes. The
Annotation Sniffer is a stable tool that analyses Java source code
and generates a JSON report with code annotations metrics
values. In other words, it measures metadata configuration in
the Java source file. The Annotation Visualizer is a tool built as
a web application to render the visualization using this report
as input. In this work, we developed a tool that integrates
the Annotation Visualizer as a plugin for the IntelliJ IDEA, a
popular Java IDE. This integration allows developers to visualize
their current project opened in the IDE without switching
to an external environment. With an IDE plugin, developers
can potentially benefit from the visualization and the metrics
values it can display. Furthermore, IDEs have a marketplace
that eases obtaining the tool and increases the probability that
the developers might use it.

Index Terms—Annotation Code, Annotation Metrics, Soft-
ware Visualization, Visualization Tool

I. Introduction

CODE annotations were introduced in version 5 of
the Java programming language. It is extensively

used in many Java enterprise software systems through
frameworks and APIs such as Spring Boot, EJB, JPA,
and JUnit. They add custom metadata into programmable
elements such as methods, fields, and classes.

Our previous work [1] proposed and validated a suite
containing seven source code metrics dedicated to code
annotations to improve and further enable the study and
analysis of code annotations. By mining open-source soft-
ware hosted on GitHub, we identified that, on average,
76% of their classes have at least one annotation. We
developed the ASniffer (Annotation Sniffer) tool to extract
these metrics values [2].

Combining software metrics with software visualization,
we proposed, in another previous work [3], the CADV
(Code Annotations Distribution Visualization), a circle
packing approach to visualize code annotations distribu-
tion in software systems. As a reference implementation,
we developed the AVisualizer (Annotation Visualizer), a
web application that reads the metrics values extracted

with the ASniffer and draws the CADV for a target project
under analysis.

During the evaluations conducted in [3], developers
were interested in using the AVisualizer and thought the
visualization approach could be helpful in the software
comprehension process. However, they were not interested
in leaving their development environment (usually an
IDE) and switching to a browser to analyze the system.
Furthermore, in the current solution, the developers must
manually run the ASniffer to collect the metrics values and
serve the AVisualizer.

This paper presents the AVisualizer Plugin1, an open-
source plugin for IntelliJ IDEA IDE, which integrates the
ASniffer and AVisualizer in a single tool to overcome that
constraint. It runs integrated into IntelliJ, a popular de-
velopment environment for Java programmers. The plugin
uses, as a dependency, the ASniffer to collect the project
metrics in the current working directory. Afterward, it
sends the extracted data to a service integrated with a web
application to store reports. Finally, it renders the CADV
via the AVisualizer running in an embedded browser pro-
vided by IntelliJ. The plugin can be obtained directly
from the official Jetbrains Marketplace and installed on
the latest version of the IntelliJ IDEA2.

The Jetbrains Marketplace provides some insights about
the usage of the available plugins. The AVisualizer plu-
gin already had hundreds of downloads and was visited
by users in several countries. Moreover, we conducted a
preliminary validation and invited developers from the
study in [3] to use the plugin and answer some code
comprehension tasks. Two participants used the plugin
and gave feedback that it was easy to install, and they
were more inclined to use it embedded in the IDE rather
than switching to another environment.

The remainder of this paper is organized as follows:
Section II describes the software development engineering
methodologies used in this work and how we structured
the development cycles. Section III contains an analysis of

1https://github.com/metaisbeta/intelliJ-avisualizer-plugin
2https://plugins.jetbrains.com/plugin/

18237-annotation-visualizer

28



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

how annotations are measured and visualized, introducing
the related works used to serve as a basis for our work. In
Section IV, we discuss how the technological system works
and which improvements were implemented in the first
version of both ASniffer and AVisualizer. In Section V, we
present a validation on the plugin with users familiar with
the ASniffer and AVisualizer. Finally, Section VI presents
our final thoughts and points to be discussed in future
works.

II. Development approach

OUR development approach was based on the collab-
oration flow for Free/Libre/Open Source Software

(FLOSS) projects and the principles applied in the Ag-
ile Software Development Manifesto, in particular from
XP (Extreme Programming) methodology [4]. XP is an
agile software development framework aiming to produce
high-quality software and higher quality of life for the
development team. We based on the principles of iteration
planning, acceptance of testing, listening to feedback, and
constant small releases.

In our approach, the team responsible for this project
meets biweekly to carry out the software development
ceremonies. Each meeting was interpreted as a sprint, a
fixed-length event that enables predictability by ensuring
inspection and adaptation of progress toward a Product
Goal at least every calendar month. At the end of each
sprint, each member reviews the work done in the period
and shares thoughts involving the development of the An-
notation Sniffer ecosystem. Each meeting had a Planning
and a Demo lasting for approximately one hour.

The “Planning” is a ceremony that kicks off the sprint.
Sprint planning aims to define what can be delivered
during the sprint and how it can be achieved. The team
prioritized the features and decided which would be de-
livered in each sprint to reach the first version of our
Minimum Valuable Product (MVP). After delivering the
MVP, the order of priority changed to improve the user
experience based on the team’s feedback and insights
generated during product development. The “Demo” event
demonstrated the work carried out in the last sprint. As
for the development of this work, the developed features
were shown in each demo. This way, everyone on the team
could share feedback and help define the next steps.

During the software development cycle, we used the
GitFlow Workflow3 to deliver our features to the code
repository. We created a feature branch to implement
each feature selected during the sprint planning ceremony.
These branches carry a source code version containing the
implementation of the new feature. This code version was
demonstrated at the Demo ceremony. If the maintainers
approved the change, pull requests were opened to merge
these branches into the main one, and the maintainers had
another opportunity to review the code. If the maintainers
approved, these branches were merged, producing a new

3https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow

release. If the maintainer requested changes, they would
be implemented and verified in another demo ceremony.

We created a fork to contribute to another previously
developed tool from the Annotation Sniffer ecosystem.
Forking is a git clone operation executed on a server copy
of a project’s repository. This method is commonly used
in public FLOSS projects. During the forking workflow,
a project version is created on the contributor’s behalf
(fork), and the changes are carried out in this copy. When
the work is done, a pull request can be made to the origin
repository. The maintainers can review it, and the fork
feature can be added to the source code if approved.

Once the code is reviewed and the pull request is
approved, the automatic tests arranged by the GitHub
platform’s Continuous Integration (CI) server are exe-
cuted. These tests automatically validate that the software
operation is not compromised. After validation, the code
is placed in the main branch and deployed to the specified
cloud provider.

Finally, to verify how developers perceived the devel-
oped solution, we invited professional developers with
previous experience using the AVisualizer web applications
to participate in a survey.

III. Measuring and Visualizing Code
Annotations

OUR research group proposed a novel suite of metrics
for code annotations [1] and developed the ASniffer

tool [2] to extract these metrics values. Moreover, we
proposed a software visualization approach named CADV
and the AVisualizer reference implementation, developed
as a web application, to visualize code annotations [3].
Considering the need to evolve this ecosystem into an
embedded solution for an IDE, we developed the AVi-
sualizer plugin. In the following subsections, we discuss
how we measure annotations and how we visualize these
measurements.

A. Visualizing Software Through Metrics

Software systems are getting more complex with time. It
can become enormous. For instance, the well-known Hiber-
nate4, a metadata-based framework for object-relational
mapping, has more than 40 thousand classes and more
than 550 thousand lines of code. This vast system is
an example of an amount of information challenging to
manage and comprehend.

Software comprehension is essential to keep software en-
gineers productive [5]. Understanding and maintaining the
software enables the team to share knowledge internally
and empowers newcomers to follow up more quickly on
the current tasks and team objectives. Software compre-
hension is also related to software evolution, recognized as
the most costly and challenging activity in the software
development life cycle. For software systems to maintain

4https://github.com/hibernate/hibernate-orm

29



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

relevance, they might require constant changes, and soft-
ware engineers should understand how this software works
before changing it and adding new features [6].

Modern IDEs use graphical Interfaces to communicate
with the user and share information about the code and
its development pipeline. IntelliJ IDEA, for example, has
a visual system to manage branches and version control
in git5. This visualization feature makes code versioning
easier for new developers. It aids in understanding the
merging of branches and how they should keep up with
the git-flow standards.

Even though some tools help the developer with graph-
ical interfaces, the software is complicated to visualize
because it is not inherently embedded in space, which
means it has no ready geometric representation [7]. There-
fore even though most information is perceived visually,
software systems have no natural shape, complicating its
visualization. For this reason, researchers keep investigat-
ing how software can be displayed so that humans can
visualize and understand the underlying structure.

The visualization approach that this work is based on
is the CADV (Code Annotations Distribution Visualiza-
tion) [3]. The CADV is based on the circle packing and,
therefore, displays everything as a circle. In other words,
packages are circles, and classes are circles. Code elements
and code annotations are also circles. Different colors,
outlines, and some elements are only visible in specific
views to differentiate them. The area of each leaf circle
in a circle-packing diagram is proportional to a given
number. For CADV, this is a code annotation metrics
value, depending on what the users wish to see. Figure
1 presents a basic circle packing [8].

B. Code Annotation Metrics

The visualization approach, CADV, requires five code
annotations metrics from Lima et al. [1], briefly described
in the following list.

Annotations in Class (AC): This metric counts the
number of annotations declared on all code elements in
a class, including nested annotations.

Annotations Schemas in Class (ASC): An annotation
schema represents a set of related annotations provided by
a framework or tool. This metric measures how coupled
a class is to a specific framework or if it is coupled to
several different frameworks. The ASniffer measures this
value by tracking the imports used for the annotations,
and the higher the number of imports, the more schemas
are required by the class.

Attributes in Annotations (AA): Annotations may con-
tain attributes. They can be a string, integer, or even
another annotation. The AA metric counts the number of
attributes contained in the annotation. Each annotation
in the class generates an AA value.

Annotations in Element Declaration (AED): Code ele-
ments may contain several annotations. The AED metric

5https://www.jetbrains.com/help/idea/settings-version-control.
html

Fig. 1. Basic Circle Packing

counts how many annotations are configuring a given code
element, including nested annotations.

LOC in Annotation Declaration (LOCAD): LOC (Line
of Code) is a well-known metric that counts the number of
code lines. The LOCAD is proposed as a variant of LOC,
but it counts the number of lines used in an annotation
declaration.

C. Annotation Sniffer

The ASniffer’s primary goal is to extract the code an-
notation metrics values from Java source code. It receives
a Java source code as input, i.e., a “.java” file, extracts the
metrics values, and outputs a JSON report.

It is a standalone tool executed through a command line.
It also has an Application Programming Interface (API)
hosted at Maven Central6, which makes it easy to use the
ASniffer as a library in any Java software. Therefore, the
ASniffer can be used as a standalone tool or a dependency.
The plugin developed for this work used the ASniffer as a
dependency.

Potential ASniffer users are software engineers or re-
searchers interested in static code analysis and mining
software repositories. Additionally, since it is an extensible
tool, other developers can implement their metrics and
integrate them into the extraction process.

The Annotation Sniffer tool uses the Java Parser API7

to build the Abstract Syntax Tree (AST) from a text file
containing the source code. The ASniffer then traverses
this AST, visiting the nodes of interest and gathering
information about the code elements, specifically code
annotations usage and the elements they are configuring.

6https://mvnrepository.com/
7https://javaparser.org

30



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

Fig. 2. Annotation Sniffer Diagram.

After completing the process, it generates a JSON report
as an output. Figure 2 presents an overview diagram of
the ASniffer tool [2].

The ASniffer has become a basis tool for our research
on code annotations. For this reason, it is constantly
improved and updated to meet the demands we require.
Furthermore, being FLOSS and its source code available
on Github8, the software engineering community can con-
tribute to the evolution of the tool.

D. Annotation Visualizer

The AVisualizer is a web application that displays code
annotations using the Code Annotations Distribution Vi-
sualization (CADV) approach. As mentioned, the CADV
uses a circle packing structure, which helps display the
hierarchical structure of the analyzed source code.

When executed, the AVisualizer presents the user with
three areas, as shown in Figure 3. These three areas are
The Header, The View, and The Schema Table. Following,
we detail each of these areas.

The Header contains four parts, described below [3]:

• Project Under Analysis: It displays the name of
the analyzed software. For our studies, we used the
Spring-retry software.

• Visualization: Since the CADV is composed of three
views, the user must know which one is currently ren-
dered. System View, Package View, and Class View
are the three possible options. Figure 3 is displaying
the System View.

• Annotation: We need to inform the user what metric
is being used to generate the size of the leaf circles.
These are the colored ones and may represent indi-
vidual code annotations or annotation schemas. As
an example, the System View uses the metric Number
of Annotations, which means the colored circle size is
calculated based on the number of code annotations
that belong to a particular annotation schema. Fur-
ther, every annotation schema has a different color.

• Package: Informs the user what package or
class it is currently inspecting. For instance,

8https://github.com/metaisbeta/asniffer

the package inspected in Figure 3 is the
org.springframework.retry, which is the root
package of the Spring Retry library.

The View is the area that displays the actual visualiza-
tion. There are three different views: The System View,
The Package View, and the Class View. For instance,
Figure 3 is displaying the System View for the Spring
Retry. The View is constantly changing and modifying to
display one of the proposed views. Only one of the three is
visible at a time. The Header also changes to inform what
current view is displayed, and the Schema Table is mostly
fixed. These last two are available for all three different
views all the time.

The System View is the default view displayed to
the user. It presents the whole project in a single view,
allowing users to quickly grasp the project under analysis.
The System View displays only packages and annotation
schemas rendered as circles. The following list presents the
characteristics of these circles [3]:

• Packages: Every circle representing a package has a
dashed outline. The outermost dashed circle repre-
sents the root package of the project. In the source
code, this package contains every other package. We
present this hierarchical information by displaying
packages inside packages as “dashed outline circles
contained in other dashed outline circles”. The circle’s
size depends on the number of code annotations used
inside the package, regardless of the number of classes.
Therefore, we are counting code annotations in all
classes, but we are not counting the classes. The
background used in these circles is gray.

• Annotation Schemas: These are colored filled circles
rendered inside “dashed outline circles”. They repre-
sent annotation schemas being used inside a specific
package. Each annotation schema has its unique col-
ors, which are reflected in the filled circles. The size
of these circles is proportional to the number of code
annotations of a particular schema. The colors white
and gray are not used to represent schemas since they
already have other meanings in the CADV approach.

The Package View can display classes and individual
code annotations inside a given observed package. Dif-

31



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

Fig. 3. Annotation Visualizer interface.

ferently from the System View designed to visualize the
whole system, in the Package View, we are interested
in a specific package. The circles are rendered with the
following characteristics [3]:

• Package: The same characteristics from the System
View, i.e., a circle with a dashed line and gray-colored
background. Usually, in the Package View, this circle
is the outermost one, working as a frame for the View
area. Every other inner circle represents elements
inside this package.

• Classes: Rendered as white-filled circles. Their size
depends on the number of code annotations used
inside the class and the metric used to draw them.
The default metric used is the LOCAD. If a white
circle appears larger than others, it represents a class
with more code annotations.

• Code Annotations: These are colored (any color be-
sides white and gray) filled circles rendered on top of
white circles. They represent code annotations used
inside a specific class. Their color matches the color
of their schema, present on the Schema Table. The
size of these circles is proportional to their LOCAD
value,i.e., the default metric used.

The Class View can display classes and individual code
annotations inside the observed class. It allows users to
visualize how code annotations are configuring a specific
programming element, such as a method, class member, or
the class itself. The circles are rendered according to the

following rules [3].

• Classes: Just as in the Package View, they are ren-
dered as a white circle. Since we are analyzing a
specific class, there will be only one white circle.

• Annotations: Colored circles representing individual
annotations. The color is related to their schema
present on the Schema Table. The size of the circle
is obtained by some code annotation metrics such as
AA, ANL, or LOCAD. The default metric is the AA
- Arguments in Annotations.

• Gray-Circles: This color is also used to represent
packages, but in the Class View they represent code
elements, such as method and class members. The
code annotations (colored circles) are rendered on top
of these gray circles. Colored circles rendered directly
on top of a white circle represent code annotations
configuring the class itself. The number of colored
circles rendered on top of the same gray circle is
the number of code annotations configuring that code
element.

In our previous work [3], we conducted two studies to in-
vestigate how the CADV, implemented as the AVisualizer
web application, can aid in software comprehension. One
study was conducted as an interview with six developers of
SpaceWeatherTSI, a web application developed for INPE9

(National Institute for Space Research) as part of the

9https://www.gov.br/inpe/pt-br

32



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

EMBRACE (“Brazilian Studies and Monitoring of Space
Weather”) program. During the interview, the partici-
pants used the AVisualizer to visualize the SpaceWeath-
erTSI software system and answer questions related to
code comprehension. Overall, the interview was carried
out informally, and the participants were free to explore
the AVisualizer tool as much as possible. Based on the
feedback from the interviews, we proposed to develop a
new solution that will integrate the AVisualizer into a
popular Java IDE. This resulted in the development of
the AVisualizer Plugin for the IntelliJ IDE. According to
StackOverflow 2019 annual survey 10, the IntelliJ is the
most popular Java IDE in the community.

IV. Annotation Visualizer Plugin

THe AVisualizer Plugin is an evolution of the AVi-
sualizer web application. It uses the ASniffer and

runs integrated as a plugin for IntelliJ IDE. It also stores
the collected metrics from ASniffer in a cloud database
for more accessible retrieval. In short, we aimed to run,
visualize, and share analyses through an IntelliJ IDE
plugin. Generating the metrics to serve the visualization
is transparent to the user.

The AVisualizer plugin allows us to visualize the system
currently opened in the IntelliJ IDE without switching
to another environment. The visualization is rendered in
the embedded browser available in IntelliJ, which eases
compatibility and lowers the development efforts to main-
tain both the AVisualizer plugin and the AVisualizer web
application. From a user perspective, it runs as a native
plugin for IntelliJ. As mentioned, in the plugin’s back end,
we have the ASniffer generating the metrics to serve the
visualization. This report can also be stored in a cloud
database. The AVisualizer plugin integrates these solutions
and makes the functionality transparent for the final user.

A. Evolution of Annotation Sniffer

During the development of the proposed plugin, several
improvements were made to the ASniffer. One improve-
ment was having the ASniffer run on the Windows operat-
ing system correctly since it was previously only executed
in UNIX-like environments. It had a bug in which the file
path separator to save the JSON report was hard-coded
in the project. It was using the reverse backlash as a path
composer, which works for UNIX systems, but it did not
work as intended in Windows. We fixed this issue with
the java.nio.File.Paths API that identifies the operating
system and composes the file path accordingly. This fix
was made by opening an issue in GitHub and contributing
a pull request to the project repository via Git Forking
Flow. New unit tests were added to ensure that this change
would not break the code11. Another improvement was
the availability of ASniffer with the IntelliJ JDK. During
our testing, we noticed that these technologies had some
incompatibilities. A wrong ClassPath use drove the bug in

10https://insights.stackoverflow.com/survey/2019/
11https://github.com/metaisbeta/asniffer/pull/4

the ASniffer. An issue12 was opened on GitHub, discussed
at our weekly meetings, and the project maintainer helped
us with a solution.

We also created the Annotation Sniffer Web Applica-
tion. It is very usual for the team to share tool views
in software development, such as monitoring logs and
dashboards. During the development of our solution, we
came across the need to have reports generated by ASniffer
saved and accessed by the AVisualizer. We decided to
develop a web API with a web REST API and a MongoDB
database. Its primary function is to save, update and
consult projects generated by ASniffer.

We developed it in Java 11 with the Spring Boot frame-
work and Spring Boot Web to handle HTTPS requests.
Spring Boot is one of the most popular frameworks for
Java, extensively used in the industry. We used tools
from the Spring ecosystem to develop this application:
Spring Data is used for managing the connection with
the MongoDB database. This application is responsible
for saving and consulting reports generated by ASniffer in
a database and returning its result in an HTTPS request.
Each project has an ID that identifies and is unique across
all saved documents.

The data is stored in MongoDB, a non-relational
database. The decision to use a non-relational database
comes from the need to store the documents generated
by ASniffer, generated in JavaScript Object Notation
(JSON). MongoDB is a document-based database and
uses a Binary Javascript Object Notation (BSON) schema,
which is a textual object notation widely used to transmit
and store data across web-based applications. JSON is eas-
ier to understand as it is human-readable, but compared to
BSON, it supports fewer data types. BSON encodes type
and length information, making it easier for machines to
parse13. Since this project is cloud-based, we chooseMongo
Atlas as our host for the MongoDB database. Mongo
Atlas is a multi-cloud database service built by the same
corporation that developed MongoDB.

B. Evolution of Annotation Visualizer

The Annotation Visualizer is also a project of the
plugin proposed in this work. We added the possibility
of recognizing a query parameter in the project URL to
achieve our goal. The query parameter of this project
must be the same ID generated by the Annotation Sniffer
Web APP. Using this information, the AVisualizer makes
a REST request to get the ASniffer reports corresponding
to this ID in Annotation Sniffer Web APP and renders
the project on the screen. This enables a dynamic visu-
alization integrated with our ecosystem. An example can
be found in Figure 4 using the ID spring-retry-16. During
the plugin’s development, the AVisualzier web application
switched from Angular to React, so we had to modify our
features to this new technology.

12https://github.com/metaisbeta/asniffer/issues/5
13https://www.mongodb.com/basics/bson

33



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

Fig. 4. Query parameter in Annotation Visualizer indicating the project

The interaction with the plugin can occur in two differ-
ent ways. The first is a button on the toolbar to start the
user’s current project analysis. The second is a modified
browser integrated with the plugin.

The browser integrated into this plugin is an adaptation
of the GIdea Browser14, which is a FLOSS implementation
of a Chromium-based browser for IntelliJ. The browser en-
gine used by this project is the Java Chromium Embedded
Framework (JCEF), an implementation of Chromium in
the Java language. The plugin is responsible for loading
custom URLs via events. In this way, we show the user
the final analysis of the project. The Plugin overview can
be found in Figure 5.

C. System Architecture and Integration

For developing this system, we used the MVC (Model-
View-Controller) architectural pattern composed of three
layers. The model is the application object, the view is its
screen presentation, and the controller defines how the user
interface reacts to user input. Thus, MVC decouples them
to increase flexibility and reuse. The AVisualizer presents
the view, and the controller and model are represented
in the Annotation Sniffer Web APP. Since both projects
are constantly developing, this pattern was chosen because
we want to decouple the plugin from both ASniffer and
the AVisualizer. MVC also enables an expansion of this
software by using the Annotation Sniffer Web APP to
render projects in other views.

A plugin for IntelliJ IDEA is an application that runs
on the JetBrains Runtime. This software was built using
IntelliJ SDK, which contains the IntelliJ OpenAPI package
that integrates the IDE. The language used for developing
the plugin is Kotlin with the Gradle framework for depen-
dency management and building. The main dependency of
this project is ASniffer, hosted at Maven Central.

The plugin for IntelliJ is event-oriented. An event-
driven architecture uses events to trigger and communicate

14https://github.com/Jonatha1983/GIdeaBrowser

between decoupled services and is common in modern
applications. An event is a state change or an update,
like a button click. Every user action generates an event
that the JetBrains Runtime computes. The button and
the sidebar generate events that the plugin interprets and
execute corresponding actions. The button triggers the
event to start the Annotation Sniffer analysis. The sidebar
button triggers the event to open the embedded browser.
The communication between the Jetbrains Runtime and
the embedded browser is event-based. When the user clicks
the button, the Runtime generates an event for the browser
to load the landing page. If everything runs correclty —
the event to load the project triggers. Otherwise, the error
page event is triggered.

To understand our system solution, we provide Figures 6
and 7 as references. In step 1 from Figure 6, the user
interacts with the plugin button and requests the analysis
of the project. In step 2, the ASniffer is activated and
analyzes the project locally. Step 3 sends the files gener-
ated by the analysis to the Annotation Sniffer Web APP.
Step 4 is to receive the project ID within the Annotation
Sniffer APP. Step 5 consists of modifying the browser’s
URL to receive the ID collected by the previous step as
a parameter. Step 6 symbolizes the project AVisualizer
sending the page HTML to be displayed by the browser.
Step 7 is the page displayed by the embedded browser,
closing our software loop.

Annotation Sniffer Plugin option is shown in the navi-
gation bar and sidebar, as shown in Figure 5. By clicking
on the button on the navigation bar, the Plugin shows
two options. The first is “Run Annotation Analysis”, and
the second is “Run Annotation Analysis (Not Persist)”, as
seen in Figure 8. The main difference is that the second
does not persist the data in the database. After the button
clicks, the IntelliJ Runtime executes an event that triggers
the analysis.

34



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

Fig. 5. IntelliJ IDEA with the Plugin

Fig. 6. Architecture of the plugin

35



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

Fig. 7. Sequence diagram for requesting and showing the visualization

V. Evaluation

WE used Spring Retry15 to evaluate and verify the
developed plugin. Spring Retry is a popular spring

boot library that provides declarative retry support for
Spring applications. It is used in Spring Batch, Spring
Integration, and other software from the Spring family.

Fig. 8. Menu Button Options

The first step in the evaluation procedure was download-
ing IntelliJ IDEA. Then the plugin, properly speaking, is
found in the IntelliJ Marketplace in the “Settings” options
browsing the “Plugins” sidebar. After downloading and
installing the plugin, two new changes occur in the IDE UI.
There is a button in the header, as seen in Figure 8, and a
button in the right sidebar, which opens the embedded
browser. The default project is SpaceWeatherTSI, and
it is just a placeholder. In the Menu button, there are
two options to choose from. The first Run Annotation
Analysis runs the Annotation Sniffer analysis, send it to
the Annotation Sniffer Web App, and stores this project
in the database. There is a second option Run Annotation
Analysis (Not Persist) which will delete the data from our

15https://github.com/spring-projects/spring-retry

database after the first consult. This second option enables
the user to use this tool without having this analysis saved
in our database.

After the button is clicked, the event starts, and the pro-
cessing analysis runs asynchronously. This job should run
asynchronously to avoid blocking the main thread from
Jetbrains Runtime. During this job execution, a loading
screen in the embedded browser gives some feedback to
the user on what is going on.

Moreover, we evaluated the plugin with two users famil-
iar with the ASniffer and AVisualizer. They participated
in a previous interview study with AVisualizer [3]. Partic-
ipants must install and use the plugin and answer some
questions. The questions were divided into two parts: (a)
answers about the information shown in the plugin that
has a correct answer, and (b) answers about the user’s
opinion regarding the plugin’s usability.

The first set of questions was all answered correctly. The
overall answers about usability were positive. Participants
agree that this plugin is easy to use and has a clean user
interface. They also considered the documentation good.

One of the users needed some help installing the plugin,
which was related to a need for more experience installing
plugins in IntelliJ IDEA since it may not be apparent
to users where the option can be found. Also, the usage
of the embedded browser received an “average grade” in
feedback. Having a browser and an IDE in the same space
can be tight and ineffective for smaller monitors. Also, we
received user feedback that when drilling down on classes,
the table of annotations should be updated by applying the
selected class or package filter. It would be interesting to
choose the metric the user wants to visualize if there are
other visualization possibilities for the chosen selection.
Currently, the AVisualizer does not have this capability.
The user should click on the package to see it.

In summary, both users answered all questions accu-

36



Abilio, S., Lima, P., Gomes, E. et al. / Revista de Sistemas de Informação da FSMA n. 30 (2022) pp. 28-37

rately from the correctness part. This result is expected
since they used AVisualizer in another context. The usage
feedback was good. We found room for improvement in
the plugin UI and that the plugin fulfilled its role.

VI. Conclusion

THE AVisualizer plugin enabled better integration
between ASniffer and AVisualizer tools. Having the

plugin embedded in the IDE empowers the developer to
access the data during the development and could help
newcomers to a project gain better insight into how the
annotations are used. This plugin lowers the barrier of
entry to the Annotation Visualizer ecosystem because it
is easy to use, intuitive, and embedded in an IDE. From
the Jetbrains Marketplace, we identified that people from
other countries unrelated to our project used the plugin
and could have already benefited from the Annotation
Visualizer.

The ASniffer and AVisualizer integration can be ex-
tended to other development processes. The technology
developed in this work can run the ASniffer analysis and
display the AVisualizer visualization during the Continu-
ous Integration (CI) process. One possible application for
this connection is to develop a CI workflow that analyzes
the source code committed by the developer and displays
a URL for the AVisualizer visualization of the project.
This approach can be implemented via GitHub Actions,
for example.

Finally, another improvement is to enable connecting
directly to AVisualizer using the files generated by the
ASniffer, stored in the local (.idea) root project directory.
Moreover, performance improvements and new features
based on user feedback will be beneficial recommendations
to maintain the project’s purpose.

Acknowledgments

We thank all the respondents who participated in our
evaluation. This work is partially supported by FAPESP
(grant #2019/12743-4).

References

[1] P. Lima, E. Guerra, P. Meirelles, L. Kanashiro, H.
Silva, and F. F. Silveira, “A metrics suite for code
annotation assessment,” Journal of Systems and Soft-
ware, vol. 137, 2018, issn: 0164-1212. doi: 10.1016/j.
jss.2017.11.024.

[2] P. Lima, E. Guerra, and P. Meirelles, “Annotation
sniffer: A tool to extract code annotations metrics,”
Journal of Open Source Software, vol. 5, no. 47,
p. 1960, 2020. doi: 10.21105/joss.01960.

[3] P. Lima, J. Melegati, E. Gomes, N. S. Pereira, E.
Guerra, and P. Meirelles, “Cadv: A software vi-
sualization approach for code annotations distribu-
tion,” Information and Software Technology, vol. 154,
p. 107 089, 2023, issn: 0950-5849. doi: doi .org/10.
1016/j.infsof.2022.107089.

[4] K. Beck and C. Andres, Extreme Programming Ex-
plained: Embrace Change (2nd Edition). Addison-
Wesley Professional, 2004, isbn: 0321278658.

[5] W. Hasselbring, A. Krause, and C. Zirkelbach, “Ex-
plorviz: Research on software visualization, compre-
hension and collaboration,” Software Impacts, vol. 6,
p. 100 034, 2020, issn: 2665-9638. doi: 10 . 1016 / j .
simpa.2020.100034.

[6] V. Rajlich, “Software evolution and maintenance,”
in Future of Software Engineering Proceedings,
ser. FOSE 2014, Hyderabad, India: Association for
Computing Machinery, 2014, pp. 133–144, isbn:
9781450328654. doi: 10.1145/2593882.2593893.

[7] F. P. Brooks, “No silver bullet essence and accidents
of software engineering,” Computer, vol. 20, no. 4,
pp. 10–19, 1987. doi: 10.1109/MC.1987.1663532.

[8] K. Stephenson, J. Cannon, W. Floyd, and W. Parry,
“Introduction to circle packing: The theory of dis-
crete analytic functions,” The Mathematical Intelli-
gencer, vol. 29, pp. 63–66, Jan. 2007. doi: 10.1007/
BF02985693.

Sergio Abilio Graduated in Computer Science from the Federal
University of ABC (UFABC). His interests are distributed software
architecture and cloud computing.
E-mail: sergio.abilio@aluno.ufabc.edu.br

Phyllipe Lima is an adjunct professor of computer science and re-
searcher at the Federal University of Itajubá (UNIFEI). His research
interests include static source code analysis, mining software repos-
itories, software visualization, game design and development. He
received his Ph.D. in Applied Computing by the National Institute
for Space Research (INPE). E-mail: phyllipe@unifei.edu.br

Everaldo Gomes is a scholarship student at the Federal University
of ABC region (UFABC). His research interests include distributed
systems, fault tolerance, model checking, and source code metrics.
Gomes received a master’s degree in Computer Engineering from the
Federal University of Rio Grande, Brazil.
E-mail: everaldogjr@gmail.com

Eduardo Guerra is currently a researcher at the Free University of
Bozen-Bolzano, worked in Brazil as a researcher in the National
Institute for Space Research in Brazil and as a teacher at Aeronautics
Institute of Technology. His research interests include agile meth-
ods, software patterns, framework development, software analytics,
and dynamic architectures. Guerra received a Ph.D. in computer
engineering from the Aeronautics Institute of Technology and has
practical experience in architecture and framework design.
E-mail: eduardo.guerra@unibz.it

Paulo Meirelles is an adjunct professor of computer science at the
Federal University of ABC region (UFABC) and a researcher at
the Free/Libre/Open Source Software Competence Center at the
University of São Paulo (USP). His research interests include free
software development, agile methodologies, DevOps, and source code
metrics. Meirelles received a PhD in computer science from the
University of São Paulo.
E-mail: paulo.meirelles@ufabc.edu.br

37


