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  
Abstract— Maintenance is an important step that must be 

performed as soon as possible, to minimize the impact of failures. 
In this paper we discuss the concept of power curve fitting and 
deviation calculation to detect failures that cause the wind turbines 
to misperform (the here denominated Type I failures). As 
mathematics and software applications evolution for predictive 
maintenance is growing fast, simple considerations will be made to 
enable the development of an advanced individual power curve, so 
the real time turbine performance analysis may be as accurate as 
possible.  
Past environmental and production data is subjected to outlier 
filtration and statistical analysis, prior to creation of a best fit that 
would allow for future failures to be detected early. The innovation 
relies on segregating a power curve for each directional sector and 
on the correction of the influence of the temperature on the power 
production, achieving an advanced power curve that really mimics 
as close as possible the real operational output. 
 

Keywords: Predictive maintenance, wind power curve fitting, 
failure detection.  

I. INTRODUCTION 

UALITY is a key factor for the satisfaction of the 
stakeholders on any business and this is also true for a 

wind farm, as well as for any industrial process. Quality has 
strong connections with the effective control of the machines 
used to generate the company’s product, and the maintenance 
of these machines is a necessary step for both productivity and 
product quality.  

Given that wind has become the renewable energy with the 
largest production worldwide, and also that it is growing very 
fast, considerable effort has been dedicated to overcome the 
youthfulness of the technology, that faces strong innovations 
and few learned lessons. Experience from other engineering 
sectors, such as aerospace, Oil&Gas and conventional energy 
production is not always immediately applicable, but indeed 
must be studied to steepen the learning curve. 

 
* Corresponding author, e-mail: neiva@cepel.br 

 This study was developed to bring information that shall be 
useful to build a better knowledge base for wind engineers 
interested on the development of turbine monitoring, based on 
power output of the wind turbines. The database used is from a 
wind park with more than 30 turbines in Latin America, placed 
in flat terrain, with 10-minute stepped database of four-year 
period.  
 To do so, this paper is organized as follows. Section II 
discusses the concepts of success and failure in wind energy 
production. Section III brings a brief report of the state of the 
art, and in Section IV it is explained how new parameters will 
be used to create an advanced power curve, while Section V 
discusses the idea of curve fitting in order to find an ideal power 
curve specific for the realities of the wind farm.  Section VI 
discusses the effects of temperature and how its impact on the 
power curve was considered, while Section VII concentrates on 
the application of the methods using SCADA data. Finally, 
section VIII concludes with some remarks and ideas for future 
work. 

II. SUCCESS AND FAILURE 

A. Failure detection 

The study of mechanisms inherent to failures and their 
detection is of foremost importance to predictive maintenance. 
Early failure detection allows evaluation of component 
remaining useful life, maintenance scheduling, and the decrease 
of its financial impact on the business. 

The use of SCADA real time data collected directly from the 
plant for maintenance planning is nowadays common practice 
in most industrial activities, including wind power generation. 
The failure of a component of a complex machine may be 
detected using real time data acquisition by analyzing one or 
more of the measured parameters (such as temperature, 
vibration, etc.) or by reading the final production output of the 
machine. Based on these concepts, the failure types may be 
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classified in two types: 

 
Type 1 – Failures that result in perceptible reduction of the 

production output of the machine since early stages of failure 
development; 

Type 2 – Failures that only affect the production output very 
close to the actual catastrophic functional failure event. 

 
Figure 1 shows an example of typical Type 1 failure 

behavior, and on Figure 2 the typical behavior of condition 2 
may be seen. The failure classification shown has the goal of 
explaining the procedure described in this paper, since there are 
infinite failure types in between the above extremes. In some 
cases, there is no ideal parameter condition that can be 
measured to predict failure with the required anticipation. 
Hence, in these cases the maintenance scheduling forecast shall 
be based on the production output. From the figures 1 and 2, it 
may be seen that analyzing production output is useful only for 
Type 1 failures. The present study is devoted to a detailed 
investigation of the factors influencing the energy production 
output of each turbine of a wind farm, and the development of 
a system able to detect the development of a potential failure 
through statistical comparison.  

Analyzing the production output also has the advantage of 
possible prediction of a more general family of failure causes, 
while parameter measurement will probably be useful for one 
or two failure causes.  

 

B. Wind power production 

The power generated by a given wind turbine is proportional 
to the cube of the wind speed and to the air density. Turbulence 
is another important and complex factor influencing power 
output and may be due to the surrounding physical 
characteristics (orography, surface roughness, obstacles and 
wake from other wind turbines) and atmospheric stability 
condition. 

The expected production of a wind turbine is represented by 
its power curve, which the power output is a function of the 
wind speed, as shown in Figure 3. 

It may be seen that the power curve has four regions, region 
1 is the region where the wind speed is below the called cut-in 
speed, where no power production is expected. Region 2 is 
between the cut-in and rated wind speed, form which the wind 
turbine can produce its nominal power. Before reaching region 
3, Jonkman et al. [1] defines a transitional region 2½, where the 
behavior does not follow the available power curve, and 
smoothly follows the constant power behavior of Region 3, 
which is limited by the electric generator capacity of the 
turbine, and the excessive power must be discarded. Due to 
safety considerations, above the cut-out wind speed the wind 
turbine must be turned off, and no energy can be produced in 
this 4th region of wind speeds. Most works devoted to power 
curve determination methods (including the present one), are 
dedicated to the region 2 of the power curve, since the other 
regions are constant. Region 2½ has specific constrains, as the 
torque slope is corresponding to the slope of an induction 
machine and there is need to limit tip speed (and hence noise 
emissions) at rated power [1]. As will be shown, this region it 
is also a challenge for the curve fitting process.  

 
Fig 3. NREL’s 5 MW Wind Turbine Power Curve [2, 1] 

 
Although the turbine manufacturer supplies standard power 

curves for their products, the IEC 61400-12 [3] states that the 
real power curve is site dependent, and the purpose of the 
standard curve is only the establishment of an ideal power curve 
for all the installed wind turbines of the site.  

 The real power curves can change, due to the factors 
mentioned above in this text. Each turbine will be subjected to 
different topological and turbulence conditions, and therefore 
their power curve will not be exactly equal to the ideal one 
presented by the manufacturer or measured by IEC 61400-12. 
A high precision power curve, herein called Advanced Power 
Curve, is useful for evaluation of the actual production and fail 
prediction of the wind turbine and also for calculation of the 

Fig. 1.   Item and measured condition for Type 1 failures. 

Fig. 2.   Item and measured condition for Type 2 failures. 
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energy that was not produced during downtime, either for 
maintenance or curtailment reasons. Hence, the interest in its 
determination. 

III. RELATED WORK 

 
 Many authors recognized the differences between the real 
power curves and the ones defined by the manufacturers and 
dealt with the problem of modelling real output conditions in 
their ways. In this section, we are going to offer a small report 
of the state of the art and their relationship to our work. Raj et 
al [4] offered a very quick review to some of the main models 
used, which is quite sketchy, but serves its purpose as an 
introduction. Another quick introduction can be found in 
Shokrzadeh et al. [5], which also shows a small practical 
application of some of the main methods to real data, which can 
be helpful for understanding.  
 Zhao et al. [6] excluded outliers to improve their power curve 
model. They first used a quartile approach to exclude the small 
clusters of outliers (which they called “sparse outliers”) and 
then used a density-based approach to exclude large clusters of 
outliers that do not correspond to correct operational 
circumstances. Our method is similar to their first approach and 
based on our results, we can consider that the large clusters are 
mostly eliminated with the first approach as well.  
 Marvuglia et al. [6] evaluated three different intelligent 
methods with high degree of accuracy. Nevertheless, the 
authors performed no initial cleaning of the data and the curves 
shown in their papers seemed to be rather ideal. They have 
single data points that they labeled as “out of control”, which 
seemed to be detected using deviation analysis, but they are 
rather sketchy in the details about this. Goudarzi and Ghayoor 
[7] have a similar take on the problem and are even sketchier 
on how they deal with outliers (seemingly, they don’t), but their 
intelligent method combines a sum of sine waves with Particle 
Swarm Optimization. Since they do not show any curves and 
report only absolute errors, it is difficult to have a correct view 
of their success. In this line of work, Renani et al [8] compare 
multi-layered perceptrons with traditional ARMA methods, 
without ever mentioning the concept of non-ideal data and even 
though they mention that their data was collected from a real 
wind farm, the curves shown in the paper seem rather ideal. 
 Yesilbudak [9], on the other hand, concentrates on detecting 
outliers using K-Means clustering and afterwards analyzing the 
distance from each point to the centroid of the group to which 
it belongs. His cluster techniques seem to divide the curve into 
regions and visually there seems to be no advantages from a 
simple density approach. One could even argue that, given that 
the author’s clusters merely reflect the division of the curve into 
regions, his examples sustain the simpler approach. 
 Wang et al. [10] propose a method that is based on splines, 
with the justification that the errors were characterized by 
heteroscedacity. Another paper from the main authors [11] 
justify this claim with an analysis of the error, showing that it 
does not fit into a gaussian distribution. 
 Looking into our data (figures 4-7) shows little evidence of 
this characteristics and even for the data these authors 
presented, heteroscedacity needs a little stretch. Besides their 
theoretical analysis [8] shows a long tail, which is normal since 

the wind farm tends to underperform instead of overperfoming. 
Besides, their work seems to include the outliers in the error 
distribution determination. Almost all papers (including ours) 
exclude outliers, for they are clearly not related to the curve. 
Wang et al [11] use an elaborate confidence method to find and 
exclude them, but it is not clear from their results how much of 
an improvement they get over simple standard deviation 
methods. 
 There is also the issue that the data [10] point to larger errors 
in regions 2, 2½, and 3, which is reasonable, for the power 
output is not constant in those areas. Nevertheless, separating 
the data into “changing” and “constant” regions will solve the 
problem with no further complication.  
 The long tail is the main challenge for the prediction model 
based on gaussian processes described by Pandit and Infield 
[13] and by Guo and Infield [14], which is also based on a 
comparison between binning and gaussian processes 
effectiveness by the same authors [15]. Nevertheless, their work 
shows an interesting characteristic in that they adjusted their 
curves for air density, something that may be an upgrade for our 
process in future works. Since we use a technique which is 
similar to binning, an analysis of changing it to a gaussian 
processes may also be beneficial in the future.  
 

IV. ADVANCED POWER CURVE 

The proposed methodology evaluates the power curve 
considering important environmental factors, to achieve a 
power curve obtained from stored measured data, for each 
turbine of a wind farm. 

Finding a curve based on stored data is an approach that 
considers that the real data stores the subjacent relationship 
between the points, that is, the function is implied in each data 
point. Therefore, if we have enough data points, we can fit the 
real curve with good precision, even taking account local errors 
due to faulty measurements, outside influences and others, that 
change each data point. Given that all other influences can be 
considered stochastic, we can consider that their influence will 
amount to null when the number of data points grows (the actual 
zero influence can only be achieve with infinite data points, but 
for the effects intended, this supposition is not far-fetched for 
tens of thousands of data points). 

We are considering that the power output is a function not 
only of the wind speed, but also of important factors that must 
be taken into consideration. 

The first factor considered is the wind direction. The 
direction of the wind brings information about the physical 
turbulence, due to wake of nearby wind turbines, roughness, 
orography, and some influence of the atmospheric stability, as 
the cold fronts, for instance, usually come from a probable 
given direction, and the turbulence, wind shifts and gusts are 
characteristic of that direction, with some given probability. 

The second factor considered is the air temperature. The 
temperature has direct influence on the air density, which can 
be easily calculated. But the temperature also brings indirect 
information about the turbulence because the convective effect 
on the atmosphere is generated by sun radiation that directly 
affects the temperature. 
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After careful analysis, we understood that the best approach 
is two-fold. The influence of the wind direction is considered 
for each turbine, while the temperature correction is applied to 
all power curves of the site, as function of the wind speed as 
shown below. Both direction and temperature also bring 
information about the wind shear, that is the speed difference 
due to the height above the ground, that affects the power 
production.  

V. STATISTICAL PROCESS AND CURVE FITTING 

 
 In this section we will describe the process we used to fit the 
data, the steps taken and the improvement each new idea 
offered to the final fitted curve. 
 

A. Wind Direction Sectors  

As the proposed system will be handled by automatic digital 
analysis, having multiple power curves for each wind turbine is 
not a problem, as long as the final results offer a better 
perspective of the real behavior of the wind turbine.  

Hence, we defined twelve wind sectors of 30° on the present 
study, so 12 power curves will be built for each turbine. The 
historical data of four years with 10 min resolution of a wind 
farm is used to adjust the curve, and each data point comprises 
the wind speed and power in the respective directional sector.  

The selected time series, for a given wind sector, is 
transformed on a table with wind speed bins of 0,5 m/s, 
containing average Power [kW] and standard deviation (SD, 
[kW]) of power, found on the respective wind speed bin. Using 
this Power-SD table, the dataset may be analyzed, and a 
filtration with standard deviation thresholds may be used for 
exclusion of outliers for generation of a power curve. Several 
different threshold levels were tested in this work and their 
exclusion is necessary because a very discrepant number is 
usually due to errors in measurement or aberrant conditions that 
were usually analyzed by the human operators and their 
inclusion in the analysis tend to distort the curve in their 
direction. Given that they tend not to represent a real instance 
of the curve, but rather a non-significative response, this 
distortion would only generate imprecision in the fitting to the 
actual meaningful data, and hence, their exclusion is quite 

justified. As the Power-SD table has bins of 0,5 m/s, the graphs 
that shows the time series data filtered points forms little 
rectangles in each bin, as may be seen in Figures 4-7. 

The search of the wind speed of the time series on the Power- 
SD table was developed based on vectorization, for operational 
efficiency. Please notice that the algorithm is quite efficient, 
and a curve fitting can be performed in a few minutes with a 
regular home computer. Given that the actual operational fitting 
will occur only sporadically (when the curves cease to offer a 
precise response), this efficiency is considered sufficient for the 
purposes of the application. 

 

B. Data Exclusion and Statistical Filtration 

 
Erratic data was excluded before the statistical analysis, 

excluding odd values when offset from nacelle to wind 
direction is large, system not OK is trigged, when grid 
connection is off even for a few seconds and other spurious data 
usually generated by sensors or other electronic system. These 
exclusions are not whimsical, but rather represent actual error 
conditions either of the SCADA systems or the turbine itself. 
Hence, the data is not representative and should be excluded 
from the sample used for learning purposes.  

On the developed system, two filtration stages were used as 
suggested by [11], and after the first filtration a new Power SD 
table is generated from the first filtration, and the threshold for 
the second filter is different from the threshold of the first one. 
Increasing restriction at one filtration stage does not achieve the 
same effect as two stage filtrations, because a new standard 
deviation parameter is calculated so the next level will result in 
a more normalized distribution. 
 

After the process, the resulting time series gathers a new 
column with the parameter SD for the Standard Deviation [kW] 
of the measured power with respect of the specific power bin. 
This standard deviation was used to exclude outlier data, for the 
reasons described above. 

  

C. Power Curve Fitting 

 
With the new time series containing the statistical filtered data 

and the Standard Deviation, the program uses a curve fitting 
module available in the Python: SciPy package. An equation 
must be supplied, as well as initial parameters, so that the fitted 
curve parameters may be calculated. 

The traditional equation for the power curve is the polinomial 
expression, with grades from 4th to 8th. In the studied case it was 
found that in the region, from 10 to 12 m/s (Region 2½), the 
polynomial curve has difficulty to fit points cloud. To force the 
fit in this region, and to make the tangency of the curve to the 
horizontal line which represents the behavior above nominal 
win speed, we adopted the strategy of adding many points close 
to the nominal wind speed with given power values. This forces 
the fitting method to flatten the curve in that region and better 
fit the artificially generated data. 

The equations given to the curve fitting were polynomials of 
grade 4th to 8th and the sigmoid logistic function; but only some 
combination of equations and SD threshold (the standard 

Fig. 4.   Fitted curve for wind Turbine 31 at sector 0º - 30°,  
with 6º degree eqn., filters w/ SD=2 and SD=1 
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deviation at with the data was cut out of the data) combinations 
were tried (given that the results found were of sufficient quality 
for the intended purposes), so a more detailed study of this topic 
was left for future work. 

 
It was found a good fitting for the 6th degree polynomial and 

the first SD threshold at 2 and on the second run, we also tried 
with a smaller cut-out, nominally, SD = 1. Figures 5-7 shows 
graphics of the filtered data and the fitted curve. 

Given the natural logistic shape of the power function, it 
would seem reasonable that the best fit would be found with a 
logistic curve. Nevertheless, all results showed that this was not 
true and that the polynomial curve was a better fit for the data. 
It is not clear why this happens, but the main assumption is that 

the derivatives of the power curve are not as steeped as the ones 
of the sigmoid function in the “middle” of the operational 
interval and do not change as much for all the active power 
region. Besides, the cut-off of the power curve is more abrupt, 
making it more difficult to fit a smoother logistic curve.  

 
We have also found that the parameter R2 alone was not a 

good measure of the quality of the fit; and the topic of ideal 
parameter to measure fitting quality for power curves is also 
open for further development. 

 

D. Standard Deviation 

 
The same algorithm that performs the curve fitting process 

also determine the standard deviation for each dataset. The 
Standard Deviation (SD) of the power was calculated for each 
speed bin. It was found that for a given database, SD varies 
according to the wind speed (s), which may be due for increased 
turbulence and chaotic wind behavior as the wind speed 
increases. The typical behavior of the SD curve is shown in 
Figure 8. 

The 3rd degree polynom was found to fit reasonably well the 
SD plot, as can be seen on the example, so this equation type 
and initial parameters were given to the curve fitting process, 
and four parameters were obtained for each run of the program.  

It is important to remember that each wind turbine is depicted 
in 12 wind sectors and the results are obtained for the whole 
wind park (as an aggregation of the individual curves), 
containing 12 lines for each turbine, with the number of points 
used for the fitting, the seven parameters for the power curve, 
the maximum power for the set, the correlation coefficient R2 

for the power curve fitting, the average temperature for the set 
and the four parameters to determine SD of the power as a 
function of the wind speed. 

 

 
Figure 8 – Typical SD curve as function of wind speed. 

  

VI. TEMPERATURE  

At higher temperatures the air density decreases, and during 
hot sunny days, convective flows induced by sun radiation 
increases turbulence. Both factors induce smaller power 
production for the same wind speed. 

Our goal initially was to create a different power curve for 
each different temperature bin (defined arbitrarily) but we 

Fig. 5.   Fitted curve for wind Turbine 25 at sector 240º - 270°,  
with 6º degree eqn., filters w/ SD=2 and SD=1 

Fig. 6.   Fitted curve for wind Turbine 20 at sector 60º - 90°,  
with 6º degree eqn., filters w/ SD=2 and SD=1 qual unidade de SD? 

Fig. 7.   Fitted curve for wind Turbine 18 at sector 0º - 30°,  
with 6º degree eqn., filters w/ SD=1 and SD=2 
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noticed that this would shrink the amount of data available for 
each different fitting process. Hence, we changed the approach 
and decided to model the relationship between temperature and 
power production. 

For the sake of simplicity and due to the nature of the curves 
seen in figure 9, it was assumed that the Power-Temperature 
correlation, for a given wind speed, is linear (P = aT + b). The 
power in figure 9 is dimentionless on base of T=10°C as 
reference. 

 
Based on four years of data collected at the SCADA historic 

database, it was found that the influence of temperature on 
power production depends of the wind speed, i.e., the angular 
coeficient a of the Power-Temperture varies with the wind 
speed as shown in figure 10. The linear coeficient b may be 
easily found when temperature correction is applied to the 
calculated power curve, but the angular coeficient a deserves 
some study.  

The discontinuity observed at v=9 m/s induced us to use a 
quadratic relation for 4<v<9 m/s, and a linear relation for 9≤ v 
< 12 m/s. These curves give us then the coefficient of the linear 
function that will be used to adjust the fitted power curve 
according to the temperature measured at the moment of 
interest. 

It is difficult to explain the abrupt change of behavior of the 
relationship at this wind speed without a thorough physical and 

climatic analysis of the process. Nevertheless, we can offer a 
hypothesis that suggests that this change is due to the big 
change on the derivative of the power function at Region 2 ½. 
Nevertheless, this function deserves more studies which should 
be performed in future work. 

VII. APPLICATION TO SCADA DATA 

There are two results obtained from the previous analysis 
applied to a given wind farm: The power curve table for each 
wind turbine by directional sectors, containing also the 
Standard Deviation;  and the temperature correction function, 
which will be applied to all power curves of the site. 

A. Temperature correction 

To perform the analysis of real time measured data for a wind 
turbine, the input parameters are the power output, the wind 
direction and the air temperature. From the wind direction 
reading, the proper power curve parameters can be found so the 
power curve equation may be used, and the expected power and 
the Standard Deviation can be calculated for the given wind 
speed.  

Maybe the simplest way to explain the application of 
temperature correction of the predicted power is to show an 
example, which can be seen in. Figure 11 

 
Fig 11. Temperature correction example 

 
 Given the current wind speed and direction, the power 
obtained from the equation resulted in 1705 kW, and the 
reference temperature for the dataset is 16°C as shown in the 
green circle. The green line is drawn for the current wind speed 
with the angular coefficient a, obtained from the temperature 
correction equation, for the given wind speed, containing the 
point (16, 1705). The real temperature where we want to 
evaluate the turbine performance is 9°C, so the corrected 
predicted power for this temperature is 1725 kW, signed in the 
blue circle. 
 It is not coincidental that when the temperature in the 
examples decreased, the power output increased. This effect is 
evident in all curves shown in Figure 9 and is a consequence on 
the increased turbulence and lower air density for hotter 
temperatures, as described in section V of this document. 

B. Power Curve 

The power curve table shows the power and standard 
deviation functions for each turbine, including reference 
temperature, R2 and the number of points considered for curve 

Fig. 9.   Average power produced by the wind turbines, on four year period 
of the wind farm, as function of temperature, for four wind speeds. 

 

Fig. 10.  Angular coefficient (a) as function of the wind speed, for the same 
data shown in figure 9. 
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fitting, for the 12 wind sectors. Having a reading of wind speed 
and direction, and produced power, it is possible to calculate the 
expected production, as well as a parameter called SC, that 
stands for Shewhart Control, calculated as shown in Equation 
(1) : 

 

     𝑆𝐶 =  
௉ೃି ௉ಶ

ௌ஽
                                      (1) 

 
Where 
PR is the real measured produced power, available from 

SCADA; 
PE is the predicted power, calculated from the parameters 

from the table developed from the historical data. 
SD is the standard deviation calculated form the parameters 

from the table developed from the historical data. 
 The value SC will then be applied to analyze the current 
status of the power plant based on the concept of Process 
Control Charts. 

Process Control Charts were introduced by Prof. Walter 
Shewhart in 1931 and are also known as Shewhart Charts [16]. 
This tool is widely used mainly on industrial process control, 
to: 

 Show evidence that the process is operating under 
statistical control; 

 Detect cause of variations; 
 Monitor and improve measurement procedures. 

Upper and lower control limits may be stablished, depending 
on process characteristics, based on standard deviation; and 
rules for alarms may be established. Although there is vast 
literature and standards [17, 16], it is so process-specific that 
does not deserve further detail here. Figure 12 shows typical 
control chart, with data distribution. Notice that at each specific 
point we have the deviation of the current data point to the 
required one (in the case of our process, the point returned from 
the fitted power curve), measured at units of SDs (hence, it 
becomes an non-dimensional number). 

 
Fig 12 – Typical Shewhart Control Chart for parameter SC. 

 

 The parameter SC may be plotted on the chart, and when the 
value SC is zero, it corresponds to the situation when the real 
power equals the predicted fitted value for that wind speed and 
direction. There are some well-established rules to analyze the 
evolution of a Shewhart Chart for early failure prediction, 
which are described at length in industry standards [17, 16], and 
being able to plot from a power curve  fitting is a great benefit 

for the wind industry. 

C. Results 

 
The application of the power curves obtained with this 

method relies on digital analysis of real time data. Once the 
Shewhart Chart tendency rules are defined, as the system 
acquires a new point the analysis of the behavior may trigger a 
pop-up of the graph on the maintenance and operator computer 
screens; so that detailed evaluation checks can be made to 
determine if maintenance actions will be recommended. 

The definition of the tendency rules for general statistical 
process control is stablished in literature and standards, but it is 
recommended that the user develop its own rules, based on 
practical experience and application of the system.  
 Figures 13-14 shows the process charts of power production 
for selected wind turbines. 

These figures are shown for visualization of the process 
control and do not show failure tendencies. 

VIII. FINAL REMARKS 

The present study showed the current development state of 
each method applied. We are aware that there are possible new 
forms of combining known statistical and digital tools in order 
to achieve a better reading of what really happens on energy 
producing wind turbines. 

Nevertheless, innovation relies in application of easily 
accessible digital programming to enrich wind turbine power 

Fig. 13.  Shewhart Control Chart for Power production of three wind turbines.

Fig. 14.  Shewhart Control Chart for Power production of five wind turbines. 
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curve application for predictive maintenance with wind 
direction and air temperature information and the results found 
in this paper show a lot of promise in increasing awareness to 
the current operational state of the wind power plant. 

The fitted curves show that it is possible to mine the data and 
discover a functional relationship that describes the actual 
conditions of the wind power plant. We need these adjustments, 
given that the graphs provided by the manufacturer do not adapt 
to the real orography and wind conditions.  

One of the most important achievements of this paper was 
the adjustment curve found for temperature data. As discussed, 
temperature is one of the factors that influence air flow and 
turbine efficiency, and it may be very hard to come with 
equations that model this air flow precisely. Hence, 
approximation methods are terribly important.  

The mere separation of data into smaller groups might render 
the data mining and data fitting techniques less effective, for we 
would have smaller data sets for each condition. Hence, we 
proposed this curve adjustment which was obtained from the 
whole data set. 

We used a linear adjustment model for temperature for it is 
the simplest. There is no claim that temperature affects the 
power output in a linear fashion, and further studies should be 
considered to find a model that may be more accurate. 
Nevertheless, even with such a simple curve fitting, we achieve 
interesting results in our fitting process.  

The method needs to be validated in the long run in actual 
production situations, but it is promising enough to be deployed 
in an actual wind farm.  

As discussed inside the paper, there is still a long way to run. 
As future work, we need to test other parameter configurations 
and understand better the change in the linear coefficient 
behavior, when mapping the relationship between power output 
and temperature. Besides, we can consider other methods of 
error treatment to eliminate outliers and improve the curve 
fitting process to achieve the Advanced Power Curve. 
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